Comparison of Response Surface and Kriging Models for Multidisciplinary Design Optimization

Paper No. AIAA-98-4755

Timothy W. Simpson

Mech Engr & Ind Engr Depts Penn State University University Park, PA 16802

John J. Korte

Multidisciplinary Optimization Branch NASA Langley Research Center Mail Stop 159, Hampton, VA 23681

Timothy M. Mauery

Civil and Env Engr Dept Brigham Young University Provo, UT 84602

Farrokh Mistree

Woodruff School of Mech Engr Georgia Institute of Technology Atlanta, GA 30332-0405

This work has been supported by the National Aeronautics and Space Administration under NASA Contract NAS1-19480 while in residence at the Institute for Computer Applications in Science and Engineering (ICASE) at the NASA Langley Research Center in Hampton, Virginia.

PENNSTATE

Presentation Outline

- Approximations in MDO
 - Motivation for using approximations
 - Approximation techniques and concerns
 - Overview of response surface and kriging models
- Multidisciplinary Design of an Aerospike Nozzle
 - □ Introduce example
 - Geometry and MDO decomposition
 - Approximation specifics
 - Graphical comparison and error analysis
 - Optimization study and results
- Closing Remarks and Ongoing Work

Why Use Approximations in MDO?

- Gain a better understanding of relationship between design variables, X, and responses, Y
- Facilitate integration of domain dependent analysis codes and simulations
- Provide surrogate approximations for rapid concept exploration and evaluation
- Find better solutions through improved convergence (smoothing of non-linearities and numerical noise)
- Identify important design variables through Analysis of Variance (ANOVA)

Approximation Techniques

Response Surfaces (Myers and Montgomery, 1996)

General form of a response surface:

$$y(\mathbf{x}) = f(\mathbf{x}) +$$

where:

- $\neg y(x)$ is unknown function of interest
- \Box f(x) is a polynomial function of x
- \sim i.i.d. N(μ =0, 2 0, Cov=0)

Example Response Surfaces (Box and Draper, 1987)

Remarks:

- □ f(x) dictates "global" behavior of model
- □ f(x) is often first- or second-order polynomial
- □ statistical measures (e.g., t-statistic and F-test) for validation may not be applicable when computer codes are deterministic

PENNSTATE

Overview of Kriging (Sacks, et al., 1989)

General form of a kriging model:

$$y(\mathbf{x}) = f(\mathbf{x}) + Z(\mathbf{x})$$

where:

- $\neg y(x)$ is unknown function of interest
- \Box f(x) is a known polynomial function of x
- $\Box Z(\mathbf{x}) \sim N(\mu=0, ^2 0, Cov 0)$

Example Kriging Model

Remarks:

- kriging model interpolates the sampled data
- □ f(x) dictates "global" behavior of model in the design space
- \Box f(x) is often taken as a constant term,
- □ Z(x) dictates "local" behavior of the model

PENNSTATE

DOE/RSM versus DACE/Kriging (Booker, 1996)

Email: tws8@psu.edu

Aerospike Nozzle Example (Korte, et al., 1997)

 Objective: Compare and contrast the use of secondorder response surface models and kriging models in the multidisciplinary design of an aerospike nozzle

Venture Star RLV

Aerospike Nozzle

PENNSTATE

Aerospike Nozzle: Geometry

Aerospike Nozzle: MDO Decomposition

Aerospike Nozzle: MDO Interactions

Aerospike Nozzle: Approximation Specifics

- Design variables (3):
 - □ Angle, height, length
- Sampling strategy:
 - 25 point randomized OA
- Model choice:
 - □ 2nd order response surface
 - □ Kriging : + Gaussian corr. fcn.
- Responses of interest (3):
 - □ Thrust output from CFD code
 - Weight output from NASTRAN optimization
 - GLOW tabulated as a function of thrust and weight

Thrust Model Contours

Weight Model Contours

GLOW Model Contours

GLOW Model Contours-End View

Approximation Model Validation

 Twenty-five (25) additional validation points are used to test the accuracy of the approximations

RS Model - 2nd order polynomial									
	weight	thrust	glow						
Max ABS(error*)	19.57%	0.032%	3.68%						
Min ABS(error)	0.32%	0.001%	0.05%						
Average ABS(error)	2.44%	0.012%	0.53%						
Root MSE**	4.54%	0.015%	0.90%						
Kriging Model - constant term									
	weight	thrust	glow						
Max ABS(error)	17.23%	0.048%	3.43%						
Min ABS(error)	0.02%	0.001%	0.04%						
Average ABS(error)	2.51%	0.012%	0.59%						
Root MSE	4.37%	0.018%	0.89%						

Aerospike Nozzle: Optimization Study

 Four (4) optimization problems are formulated and solved to compare further approximation accuracy

Find: angle, height, and length of the nozzle Satisfy:

- □ Bounds: -1 angle, height, length 1
- Constraint limits on responses not in objective function

Objective:

Single discipline Multiple disciplines

- Maximize Thrust
 Maximize Thrust/Weight Ratio
- 2. Minimize Weight 4. Minimize Gross Lift-Off Weight
- GRG algorithm in OptdesX; three (3) starting points

Optimization Results: Minimize GLOW

Approx. Model	Avg. # Analysis Calls	Avg. # Gradient Calls		Variable	Response	Predicted Optimum		% Error
			Angle	0.616	Thrust	1.0013	0.9957	0.56%
RS	30.67	3.33	Height	-1.000	Weight	0.8969	0.8617	4.09%
Models			Length	1.000	Thr/Wt	1.0251	1.0286	-0.34%
					GLOW	0.966	1.0146	-4.79%
			Angle	0.764	Thrust	1.0009	1.0006	0.04%
Kriging	57.67	6.33	Height	-0.833	Weight	0.906	0.8732	3.75%
Models			Length	0.676	Thr/Wt	1.0228	1.0302	-0.72%
					GLOW	0.9675	0.968	-0.05%

- Kriging models typically require
 - □ 1-3 more gradient calls
 - □ 2-3 times more analysis calls
- However, predicted optimum design is more accurate, particularly in the multidisciplinary design cases

Closing Remarks

- Demonstrated usefulness of approximation models in a realistic, engineering application
- Second-order response surface models and kriging models yield comparable results in this example as verified through:
 - graphical comparison
 - additional validation points
 - optimization study
- Kriging model with constant "global" model and "local" Gaussian correlation function is as accurate as a full second-order response surface model

Ongoing and Future Work

- Additional testing of the utility of kriging approximations
 - Which correlation function is best?
 - Should a linear or quadratic "global" model be employed?
- Usefulness of different experimental designs
 - □ "Classical" DOE (2): central composite; Box-Behnken
 - "Space-filling" DOE (9): random, minimax, maximin, IMSE optimal, orthogonal, and orthogonal-array based Latin hypercubes; orthogonal arrays; Hammersley sampling sequences; uniform designs
- Aerospike Nozzle Example
 - Decompose disciplines, build separate approximations for each, and then optimize using different MDO formulations
 - Numerical noise in the data

